Pancreatic Cancer

Pancreatic Cancer

Definition of Pancreatic Cancer: Pancreatic cancer can develop from two kinds of cells in the pancreas: exocrine cells and neuroendocrine cells, such as islet cells. The exocrine type is more common and is usually found at an advanced stage. Pancreatic neuroendocrine tumors (islet cell tumors) are less common but have a better prognosis.

See also:
Questions to ask your Dr.
Steps to Recovery
Other Treatment Options
Treatment Side Effects
Life-saving Tests
Risk of Recurrence

General Information About Pancreatic Cancer
Source: National Cancer Institute

Key Points

  • Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas.
  • Smoking and health history can affect the risk of pancreatic cancer.
  • Signs and symptoms of pancreatic cancer include jaundice, pain, and weight loss.
  • Pancreatic cancer is difficult to detect (find) and diagnose early.
  • Tests that examine the pancreas are used to detect (find), diagnose, and stage pancreatic cancer.
  • Certain factors affect prognosis (chance of recovery) and treatment options.

Pancreatic cancer is a disease in which malignant (cancer) cells form in the tissues of the pancreas.

The pancreas is a gland about 6 inches long that is shaped like a thin pear lying on its side. The wider end of the pancreas is called the head, the middle section is called the body, and the narrow end is called the tail. The pancreas lies between the stomach and the spine.

The pancreas has two main jobs in the body:

  • To make juices that help digest (break down) food.
  • To make hormones, such as insulin and glucagon, that help control blood sugar levels. Both of these hormones help the body use and store the energy it gets from food.

The digestive juices are made by exocrine pancreas cells and the hormones are made by endocrine pancreas cells. About 95% of pancreatic cancers begin in exocrine cells.

This summary is about exocrine pancreatic cancer.

Exocrine pancreatic cancer.

Smoking and health history can affect the risk of pancreatic cancer.

Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk.

Risk factors for pancreatic cancer include the following:

  • Smoking.
  • Being very overweight.
  • Having a personal history of diabetes or chronic pancreatitis.
  • Having a family history of pancreatic cancer or pancreatitis.
  • Having certain hereditary conditions, such as:
    • Multiple endocrine neoplasia type 1 (MEN1) syndrome.
    • Hereditary nonpolyposis colon cancer (HNPCC; Lynch syndrome).
    • von Hippel-Lindau syndrome.
    • Peutz-Jeghers syndrome.
    • Hereditary breast and ovarian cancer syndrome.
    • Familial atypical multiple mole melanoma (FAMMM) syndrome.

What are the symptoms of pancreatic cancer ?

Pancreatic cancer may not cause early signs or symptoms. Signs and symptoms may be caused by pancreatic cancer or by other conditions. Check with your doctor if you have any of the following:

  • Jaundice (yellowing of the skin and whites of the eyes).
  • Light-colored stools.
  • Dark urine.
  • Pain in the upper or middle abdomen and back.
  • Weight loss for no known reason.
  • Loss of appetite.
  • Feeling very tired.

Pancreatic cancer is difficult to detect (find) and diagnose early.

Pancreatic cancer is difficult to detect and diagnose for the following reasons:

  • There aren’t any noticeable signs or symptoms in the early stages of pancreatic cancer.
  • The signs and symptoms of pancreatic cancer, when present, are like the signs and symptoms of many other illnesses.
  • The pancreas is hidden behind other organs such as the stomach, small intestine, liver, gallbladder, spleen, and bile ducts.

What Tests are used to diagnose pancreatic cancer?

Pancreatic cancer is usually diagnosed with tests and procedures that make pictures of the pancreas and the area around it. The process used to find out if cancer cells have spread within and around the pancreas is called staging. Tests and procedures to detect, diagnose, and stage pancreatic cancer are usually done at the same time. In order to plan treatment, it is important to know the stage of the disease and whether or not the pancreatic cancer can be removed by surgery.

The following tests and procedures may be used:

  • Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient’s health habits and past illnesses and treatments will also be taken.
  • Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as bilirubin, released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease in the organ or tissue that makes it.
  • Tumor marker test : A procedure in which a sample of blood, urine, or tissue is checked to measure the amounts of certain substances, such as CA 19-9, and carcinoembryonic antigen (CEA), made by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the body. These are called tumor markers.
  • MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI).
  • CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography. A spiral or helical CT scan makes a series of very detailed pictures of areas inside the body using an x-ray machine that scans the body in a spiral path.
  • PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radionuclide glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do. A PET scan and CT scan may be done at the same time. This is called a PET-CT.
  • Abdominal ultrasound : An ultrasound exam used to make pictures of the inside of the abdomen. The ultrasound transducer is pressed against the skin of the abdomen and directs high-energy sound waves (ultrasound) into the abdomen. The sound waves bounce off the internal tissues and organs and make echoes. The transducer receives the echoes and sends them to a computer, which uses the echoes to make pictures called sonograms. The picture can be printed to be looked at later.
  • Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body, usually through the mouth or rectum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography.
  • Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes pancreatic cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope (a thin, lighted tube) is passed through the mouth, esophagus, and stomach into the first part of the small intestine. A catheter (a smaller tube) is then inserted through the endoscope into the pancreatic ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken.
  • Percutaneous transhepatic cholangiography (PTC): A procedure used to x-ray the liver and bile ducts. A thin needle is inserted through the skin below the ribs and into the liver. Dye is injected into the liver or bile ducts and an x-ray is taken. If a blockage is found, a thin, flexible tube called a stent is sometimes left in the liver to drain bile into the small intestine or a collection bag outside the body. This test is done only if ERCP cannot be done.
  • Laparoscopy : A surgical procedure to look at the organs inside the abdomen to check for signs of disease. Small incisions (cuts) are made in the wall of the abdomen and a laparoscope (a thin, lighted tube) is inserted into one of the incisions. The laparoscope may have an ultrasound probe at the end in order to bounce high-energy sound waves off internal organs, such as the pancreas. This is called laparoscopic ultrasound. Other instruments may be inserted through the same or other incisions to perform procedures such as taking tissue samples from the pancreas or a sample of fluid from the abdomen to check for cancer.
  • Biopsy: The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. There are several ways to do a biopsy for pancreatic cancer. A fine needle or a core needle may be inserted into the pancreas during an x-ray or ultrasound to remove cells. Tissue may also be removed during a laparoscopy.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis (chance of recovery) and treatment options depend on the following:

  • Whether or not the tumor can be removed by surgery.
  • The stage of the cancer (the size of the tumor and whether the cancer has spread outside the pancreas to nearby tissues or lymph nodes or to other places in the body).
  • The patient’s general health.
  • Whether the cancer has just been diagnosed or has recurred (come back).

Pancreatic cancer can be controlled only if it is found before it has spread, when it can be completely removed by surgery. If the cancer has spread, palliative treatment can improve the patient’s quality of life by controlling the symptoms and complications of this disease.

Stages of Pancreatic Cancer

Tests and procedures to stage pancreatic cancer are usually done at the same time as diagnosis.

The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage of the disease in order to plan treatment. The results of some of the tests used to diagnose pancreatic cancer are often also used to stage the disease.

There are three ways that cancer spreads in the body.

Cancer can spread through tissue, the lymph system, and the blood:

  • Tissue. The cancer spreads from where it began by growing into nearby areas.
  • Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body.
  • Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.

Cancer may spread from where it began to other parts of the body.

When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood.

  • Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body.
  • Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body.

The metastatic tumor is the same type of cancer as the primary tumor. For example, if pancreatic cancer spreads to the liver, the cancer cells in the liver are actually pancreatic cancer cells. The disease is metastatic pancreatic cancer, not liver cancer.

The following stages are used for pancreatic cancer:

Stage 0 (Carcinoma in Situ)

In stage 0, abnormal cells are found in the lining of the pancreas. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is also called carcinoma in situ.

Stage I

In stage I, cancer has formed and is found in the pancreas only. Stage I is divided into stage IA and stage IB, based on the size of the tumor.

  • Stage IA: The tumor is 2 centimeters or smaller.
  • Stage IB: The tumor is larger than 2 centimeters but not larger than 4 centimeters.

Stage II

Stage II is divided into stages IIA and IIB, depending on the size of the tumor and where the cancer has spread.

  • Stage IIA: The tumor is larger than 4 centimeters.
  • Stage IIB: The tumor is any size and cancer has spread to 1 to 3 nearby lymph nodes.

Stage III

In stage III, the tumor is any size and cancer has spread to:

  • four or more nearby lymph nodes; or
  • the major blood vessels near the pancreas.

Stage IV

In stage IV, the tumor is any size and cancer has spread to other parts of the body, such as the liver, lung, or peritoneal cavity (the body cavity that contains most of the organs in the abdomen).

Recurrent Pancreatic Cancer

Recurrent pancreatic cancer is cancer that has recurred (come back) after it has been treated. The cancer may come back in the pancreas or in other parts of the body.

Treatment for Pancreatic Cancer

There are different types of treatment for patients with pancreatic cancer.

Different types of treatment are available for patients with pancreatic cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Five types of standard treatment are used:

Surgery

One of the following types of surgery may be used to take out the tumor:

  • Whipple procedure: A surgical procedure in which the head of the pancreas, the gallbladder, part of the stomach, part of the small intestine, and the bile duct are removed. Enough of the pancreas is left to produce digestive juices and insulin.
  • Total pancreatectomy: This operation removes the whole pancreas, part of the stomach, part of the small intestine, the common bile duct, the gallbladder, the spleen, and nearby lymph nodes.
  • Distal pancreatectomy: The body and the tail of the pancreas and usually the spleen are removed.

If the cancer has spread and cannot be removed, the following types of palliative surgery may be done to relieve symptoms and improve quality of life:

  • Surgical biliary bypass: If cancer is blocking the small intestine and bile is building up in the gallbladder, a biliary bypass may be done. During this operation, the doctor will cut the gallbladder or bile duct and sew it to the small intestine to create a new pathway around the blocked area.
  • Endoscopic stent placement: If the tumor is blocking the bile duct, surgery may be done to put in a stent (a thin tube) to drain bile that has built up in the area. The doctor may place the stent through a catheter that drains to the outside of the body or the stent may go around the blocked area and drain the bile into the small intestine.
  • Gastric bypass: If the tumor is blocking the flow of food from the stomach, the stomach may be sewn directly to the small intestine so the patient can continue to eat normally.

Radiation therapy

Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy.

  • External radiation therapy uses a machine outside the body to send radiation toward the cancer.
  • Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer.

The way the radiation therapy is given depends on the type and stage of the cancer being treated.

Chemotherapy

Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is treatment using more than one anticancer drug. The way the chemotherapy is given depends on the type and stage of the cancer being treated.

Chemoradiation therapy

Chemoradiation therapy combines chemotherapy and radiation therapy to increase the effects of both.

Targeted therapy

Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Tyrosine kinase inhibitors (TKIs) are targeted therapy drugs that block signals needed for tumors to grow. Erlotinib is a type of TKI used to treat pancreatic cancer.

There are treatments for pain caused by pancreatic cancer.

Pain can occur when the tumor presses on nerves or other organs near the pancreas. When pain medicine is not enough, there are treatments that act on nerves in the abdomen to relieve the pain. The doctor may inject medicine into the area around affected nerves or may cut the nerves to block the feeling of pain. Radiation therapy with or without chemotherapy can also help relieve pain by shrinking the tumor.

Patients with pancreatic cancer have special nutritional needs.

Surgery to remove the pancreas may affect its ability to make pancreatic enzymes that help to digest food. As a result, patients may have problems digesting food and absorbing nutrients into the body. To prevent malnutrition, the doctor may prescribe medicines that replace these enzymes.

New types of treatment are being tested in clinical trials.

This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied.

Biologic therapy

Biologic therapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. This type of cancer treatment is also called biotherapy or immunotherapy.

Treatment for pancreatic cancer may cause side effects.

Patients may want to think about taking part in a clinical trial.

For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment.

Many of today’s standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment.

Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.

Patients can enter clinical trials before, during, or after starting their cancer treatment.

Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment.

Follow-up tests may be needed

Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. This is sometimes called re-staging.

Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.

Treatment Options by Stage

Stages I and II Pancreatic Cancer

Treatment of stage I and stage II pancreatic cancer may include the following:

  • Surgery.
  • Surgery followed by chemotherapy.
  • Surgery followed by chemoradiation.
  • A clinical trial of combination chemotherapy.
  • A clinical trial of chemotherapy and targeted therapy, with or without chemoradiation.
  • A clinical trial of chemotherapy and/or radiation therapy before surgery.

Stage III Pancreatic Cancer

Treatment of stage III pancreatic cancer may include the following:

  • Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine.
  • Chemotherapy followed by chemoradiation.
  • Chemoradiation followed by chemotherapy.
  • Chemotherapy with or without targeted therapy.
  • A clinical trial of new anticancer therapies together with chemotherapy or chemoradiation.
  • A clinical trial of radiation therapy given during surgery or internal radiation therapy.

Stage IV Pancreatic Cancer

Treatment of stage IV pancreatic cancer may include the following:

  • Palliative treatments to relieve pain, such as nerve blocks, and other supportive care.
  • Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine.
  • Chemotherapy with or without targeted therapy.
  • Clinical trials of new anticancer agents with or without chemotherapy.

Treatment Options for Recurrent Pancreatic Cancer

Treatment of recurrent pancreatic cancer may include the following:

  • Palliative surgery or stent placement to bypass blocked areas in ducts or the small intestine.
  • Palliative radiation therapy to shrink the tumor.
  • Other palliative medical care to reduce symptoms, such as nerve blocks to relieve pain.
  • Chemotherapy.
  • Clinical trials of chemotherapy, new anticancer therapies, or biologic therapy.
Updated: May 23, 2018








Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

Key Points

  • Pancreatic neuroendocrine tumors form in hormone-making cells (islet cells) of the pancreas.
  • Pancreatic NETs may or may not cause signs or symptoms.
  • There are different kinds of functional pancreatic NETs.
  • Having certain syndromes can increase the risk of pancreatic NETs.
  • Different types of pancreatic NETs have different signs and symptoms.
  • Lab tests and imaging tests are used to detect (find) and diagnose pancreatic NETs.
  • Other kinds of lab tests are used to check for the specific type of pancreatic NETs.
  • Certain factors affect prognosis (chance of recovery) and treatment options.

Pancreatic neuroendocrine tumors form in hormone-making cells (islet cells) of the pancreas.

The pancreas is a gland about 6 inches long that is shaped like a thin pear lying on its side. The wider end of the pancreas is called the head, the middle section is called the body, and the narrow end is called the tail. The pancreas lies behind the stomach and in front of the spine.

There are two kinds of cells in the pancreas:

  • Endocrine pancreas cells make several kinds of hormones (chemicals that control the actions of certain cells or organs in the body), such as insulin to control blood sugar. They cluster together in many small groups (islets) throughout the pancreas. Endocrine pancreas cells are also called islet cells or islets of Langerhans. Tumors that form in islet cells are called islet cell tumors, pancreatic endocrine tumors, or pancreatic neuroendocrine tumors (pancreatic NETs).
  • Exocrine pancreas cells make enzymes that are released into the small intestine to help the body digest food. Most of the pancreas is made of ducts with small sacs at the end of the ducts, which are lined with exocrine cells.

This summary discusses islet cell tumors of the endocrine pancreas.

Pancreatic neuroendocrine tumors (NETs) may be benign (not cancer) or malignant (cancer). When pancreatic NETs are malignant, they are called pancreatic endocrine cancer or islet cell carcinoma.

Pancreatic NETs are much less common than pancreatic exocrine tumors and have a better prognosis.

Pancreatic NETs may or may not cause signs or symptoms.

Pancreatic NETs may be functional or nonfunctional:

  • Functional tumors make extra amounts of hormones, such as gastrin, insulin, and glucagon, that cause signs and symptoms.
  • Nonfunctional tumors do not make extra amounts of hormones. Signs and symptoms are caused by the tumor as it spreads and grows. Most nonfunctional tumors are malignant (cancer).

Most pancreatic NETs are functional tumors.

There are different kinds of functional pancreatic NETs.

Pancreatic NETs make different kinds of hormones such as gastrin, insulin, and glucagon. Functional pancreatic NETs include the following:

  • Gastrinoma: A tumor that forms in cells that make gastrin. Gastrin is a hormone that causes the stomach to release an acid that helps digest food. Both gastrin and stomach acid are increased by gastrinomas. When increased stomach acid, stomach ulcers, and diarrhea are caused by a tumor that makes gastrin, it is called Zollinger-Ellison syndrome. A gastrinoma usually forms in the head of the pancreas and sometimes forms in the small intestine. Most gastrinomas are malignant (cancer).
  • Insulinoma: A tumor that forms in cells that make insulin. Insulin is a hormone that controls the amount of glucose (sugar) in the blood. It moves glucose into the cells, where it can be used by the body for energy. Insulinomas are usually slow-growing tumors that rarely spread. An insulinoma forms in the head, body, or tail of the pancreas. Insulinomas are usually benign (not cancer).
  • Glucagonoma: A tumor that forms in cells that make glucagon. Glucagon is a hormone that increases the amount of glucose in the blood. It causes the liver to break down glycogen. Too much glucagon causes hyperglycemia (high blood sugar). A glucagonoma usually forms in the tail of the pancreas. Most glucagonomas are malignant (cancer).
  • Other types of tumors: There are other rare types of functional pancreatic NETs that make hormones, including hormones that control the balance of sugar, salt, and water in the body. These tumors include:
    • VIPomas, which make vasoactive intestinal peptide. VIPoma may also be called Verner-Morrison syndrome.
    • Somatostatinomas, which make somatostatin.

    These other types of tumors are grouped together because they are treated in much the same way.

Having certain syndromes can increase the risk of pancreatic NETs.

Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk.

Multiple endocrine neoplasia type 1 (MEN1) syndrome is a risk factor for pancreatic NETs.

Signs and Symptoms

Different types of pancreatic NETs have different signs and symptoms.

Signs or symptoms can be caused by the growth of the tumor and/or by hormones the tumor makes or by other conditions. Some tumors may not cause signs or symptoms. Check with your doctor if you have any of these problems.

Signs and symptoms of a non-functional pancreatic NET

A non-functional pancreatic NET may grow for a long time without causing signs or symptoms. It may grow large or spread to other parts of the body before it causes signs or symptoms, such as:

  • Diarrhea.
  • Indigestion.
  • A lump in the abdomen.
  • Pain in the abdomen or back.
  • Yellowing of the skin and whites of the eyes.

Signs and symptoms of a functional pancreatic NET

The signs and symptoms of a functional pancreatic NET depend on the type of hormone being made.

Too much gastrin may cause:

  • Stomach ulcers that keep coming back.
  • Pain in the abdomen, which may spread to the back. The pain may come and go and it may go away after taking an antacid.
  • The flow of stomach contents back into the esophagus (gastroesophageal reflux).
  • Diarrhea.

Too much insulin may cause:

  • Low blood sugar. This can cause blurred vision, headache, and feeling lightheaded, tired, weak, shaky, nervous, irritable, sweaty, confused, or hungry.
  • Fast heartbeat.

Too much glucagon may cause:

  • Skin rash on the face, stomach, or legs.
  • High blood sugar. This can cause headaches, frequent urination, dry skin and mouth, or feeling hungry, thirsty, tired, or weak.
  • Blood clots. Blood clots in the lung can cause shortness of breath, cough, or pain in the chest. Blood clots in the arm or leg can cause pain, swelling, warmth, or redness of the arm or leg.
  • Diarrhea.
  • Weight loss for no known reason.
  • Sore tongue or sores at the corners of the mouth.

Too much vasoactive intestinal peptide (VIP) may cause:

  • Very large amounts of watery diarrhea.
  • Dehydration. This can cause feeling thirsty, making less urine, dry skin and mouth, headaches, dizziness, or feeling tired.
  • Low potassium level in the blood. This can cause muscle weakness, aching, or cramps, numbness and tingling, frequent urination, fast heartbeat, and feeling confused or thirsty.
  • Cramps or pain in the abdomen.
  • Weight loss for no known reason.

Too much somatostatin may cause:

  • High blood sugar. This can cause headaches, frequent urination, dry skin and mouth, or feeling hungry, thirsty, tired, or weak.
  • Diarrhea.
  • Steatorrhea (very foul-smelling stool that floats).
  • Gallstones.
  • Yellowing of the skin and whites of the eyes.
  • Weight loss for no known reason.

What Tests are used to diagnose pancreatic NETs?

The following tests and procedures may be used:

  • Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient’s health habits and past illnesses and treatments will also be taken.
  • Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances, such as glucose (sugar), released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease in the organ or tissue that makes it.
  • Chromogranin A test: A test in which a blood sample is checked to measure the amount of chromogranin A in the blood. A higher than normal amount of chromogranin A and normal amounts of hormones such as gastrin, insulin, and glucagon can be a sign of a non-functional pancreatic NET.
  • Abdominal CT scan (CAT scan): A procedure that makes a series of detailed pictures of the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography.
  • MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI).
  • Somatostatin receptor scintigraphy : A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS.
  • Endoscopic ultrasound (EUS): A procedure in which an endoscope is inserted into the body, usually through the mouth or rectum. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A probe at the end of the endoscope is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. This procedure is also called endosonography.
  • Endoscopic retrograde cholangiopancreatography (ERCP): A procedure used to x-ray the ducts (tubes) that carry bile from the liver to the gallbladder and from the gallbladder to the small intestine. Sometimes pancreatic cancer causes these ducts to narrow and block or slow the flow of bile, causing jaundice. An endoscope is passed through the mouth, esophagus, and stomach into the first part of the small intestine. An endoscope is a thin, tube-like instrument with a light and a lens for viewing. A catheter (a smaller tube) is then inserted through the endoscope into the pancreatic ducts. A dye is injected through the catheter into the ducts and an x-ray is taken. If the ducts are blocked by a tumor, a fine tube may be inserted into the duct to unblock it. This tube (or stent) may be left in place to keep the duct open. Tissue samples may also be taken and checked under a microscope for signs of cancer.
  • Angiogram : A procedure to look at blood vessels and the flow of blood. A contrast dye is injected into the blood vessel. As the contrast dye moves through the blood vessel, x-rays are taken to see if there are any blockages.
  • Laparotomy : A surgical procedure in which an incision (cut) is made in the wall of the abdomen to check the inside of the abdomen for signs of disease. The size of the incision depends on the reason the laparotomy is being done. Sometimes organs are removed or tissue samples are taken and checked under a microscope for signs of disease.
  • Intraoperative ultrasound : A procedure that uses high-energy sound waves (ultrasound) to create images of internal organs or tissues during surgery. A transducer placed directly on the organ or tissue is used to make the sound waves, which create echoes. The transducer receives the echoes and sends them to a computer, which uses the echoes to make pictures called sonograms.
  • Biopsy : The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. There are several ways to do a biopsy for pancreatic NETs. Cells may be removed using a fine or wide needle inserted into the pancreas during an x-ray or ultrasound. Tissue may also be removed during a laparoscopy (a surgical incision made in the wall of the abdomen).
  • Bone scan : A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the blood. The radioactive material collects in bones where cancer cells have spread and is detected by a scanner.

Other kinds of lab tests are used to check for the specific type of pancreatic NETs.

The following tests and procedures may be used:

Gastrinoma

  • Fasting serum gastrin test: A test in which a blood sample is checked to measure the amount of gastrin in the blood. This test is done after the patient has had nothing to eat or drink for at least 8 hours. Conditions other than gastrinoma can cause an increase in the amount of gastrin in the blood.
  • Basal acid output test: A test to measure the amount of acid made by the stomach. The test is done after the patient has had nothing to eat or drink for at least 8 hours. A tube is inserted through the nose or throat, into the stomach. The stomach contents are removed and four samples of gastric acid are removed through the tube. These samples are used to find out the amount of gastric acid made during the test and the pH level of the gastric secretions.
  • Secretin stimulation test : If the basal acid output test result is not normal, a secretin stimulation test may be done. The tube is moved into the small intestine and samples are taken from the small intestine after a drug called secretin is injected. Secretin causes the small intestine to make acid. When there is a gastrinoma, the secretin causes an increase in how much gastric acid is made and the level of gastrin in the blood.
  • Somatostatin receptor scintigraphy: A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS.

Insulinoma

  • Fasting serum glucose and insulin test: A test in which a blood sample is checked to measure the amounts of glucose (sugar) and insulin in the blood. The test is done after the patient has had nothing to eat or drink for at least 24 hours.

Glucagonoma

  • Fasting serum glucagon test: A test in which a blood sample is checked to measure the amount of glucagon in the blood. The test is done after the patient has had nothing to eat or drink for at least 8 hours.

Other tumor types

  • VIPoma
    • Serum VIP (vasoactive intestinal peptide) test: A test in which a blood sample is checked to measure the amount of VIP.
    • Blood chemistry studies: A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease in the organ or tissue that makes it. In VIPoma, there is a lower than normal amount of potassium.
    • Stool analysis : A stool sample is checked for a higher than normal sodium (salt) and potassium levels.
  • Somatostatinoma
    • Fasting serum somatostatin test: A test in which a blood sample is checked to measure the amount of somatostatin in the blood. The test is done after the patient has had nothing to eat or drink for at least 8 hours.
    • Somatostatin receptor scintigraphy: A type of radionuclide scan that may be used to find small pancreatic NETs. A small amount of radioactive octreotide (a hormone that attaches to tumors) is injected into a vein and travels through the blood. The radioactive octreotide attaches to the tumor and a special camera that detects radioactivity is used to show where the tumors are in the body. This procedure is also called octreotide scan and SRS.

Certain factors affect prognosis (chance of recovery) and treatment options.

Pancreatic NETs can often be cured. The prognosis (chance of recovery) and treatment options depend on the following:

  • The type of cancer cell.
  • Where the tumor is found in the pancreas.
  • Whether the tumor has spread to more than one place in the pancreas or to other parts of the body.
  • Whether the patient has MEN1 syndrome.
  • The patient’s age and general health.
  • Whether the cancer has just been diagnosed or has recurred (come back).

Stages of Pancreatic Neuroendocrine Tumors

The plan for cancer treatment depends on where the NET is found in the pancreas and whether it has spread.

The process used to find out if cancer has spread within the pancreas or to other parts of the body is called staging. The results of the tests and procedures used to diagnose pancreatic neuroendocrine tumors (NETs) are also used to find out whether the cancer has spread. See the General Information section for a description of these tests and procedures.

Although there is a standard staging system for pancreatic NETs, it is not used to plan treatment. Treatment of pancreatic NETs is based on the following:

  • Whether the cancer is found in one place in the pancreas.
  • Whether the cancer is found in several places in the pancreas.
  • Whether the cancer has spread to lymph nodes near the pancreas or to other parts of the body such as the liver, lung, peritoneum, or bone.

There are three ways that cancer spreads in the body.

Cancer can spread through tissue, the lymph system, and the blood:

  • Tissue. The cancer spreads from where it began by growing into nearby areas.
  • Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body.
  • Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.

Cancer may spread from where it began to other parts of the body.

When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood.

  • Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body.
  • Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body.

The metastatic tumor is the same type of tumor as the primary tumor. For example, if a pancreatic neuroendocrine tumor spreads to the liver, the tumor cells in the liver are actually neuroendocrine tumor cells. The disease is metastatic pancreatic neuroendocrine tumor, not liver cancer.

Recurrent Pancreatic Neuroendocrine Tumors

Recurrent pancreatic neuroendocrine tumors (NETs) are tumors that have recurred (come back) after being treated. The tumors may come back in the pancreas or in other parts of the body.

Treatment Options

There are different types of treatment for patients with pancreatic NETs.

Different types of treatments are available for patients with pancreatic neuroendocrine tumors (NETs). Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Six types of standard treatment are used:

Surgery

An operation may be done to remove the tumor. One of the following types of surgery may be used:

  • Enucleation: Surgery to remove the tumor only. This may be done when cancer occurs in one place in the pancreas.
  • Pancreatoduodenectomy: A surgical procedure in which the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct are removed. Enough of the pancreas is left to make digestive juices and insulin. The organs removed during this procedure depend on the patient’s condition. This is also called the Whipple procedure.
  • Distal pancreatectomy: Surgery to remove the body and tail of the pancreas. The spleen may also be removed.
  • Total gastrectomy: Surgery to remove the whole stomach.
  • Parietal cell vagotomy: Surgery to cut the nerve that causes stomach cells to make acid.
  • Liver resection: Surgery to remove part or all of the liver.
  • Radiofrequency ablation: The use of a special probe with tiny electrodes that kill cancer cells. Sometimes the probe is inserted directly through the skin and only local anesthesia is needed. In other cases, the probe is inserted through an incision in the abdomen. This is done in the hospital with general anesthesia.
  • Cryosurgical ablation: A procedure in which tissue is frozen to destroy abnormal cells. This is usually done with a special instrument that contains liquid nitrogen or liquid carbon dioxide. The instrument may be used during surgery or laparoscopy or inserted through the skin. This procedure is also called cryoablation.

Chemotherapy

Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy). When chemotherapy is placed directly into the cerebrospinal fluid, an organ, or a body cavity such as the abdomen, the drugs mainly affect cancer cells in those areas (regional chemotherapy). Combination chemotherapy is the use of more than one anticancer drug. The way the chemotherapy is given depends on the type of the cancer being treated.

Hormone therapy

Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working.

Hepatic arterial occlusion or chemoembolization

Hepatic arterial occlusion uses drugs, small particles, or other agents to block or reduce the flow of blood to the liver through the hepatic artery (the major blood vessel that carries blood to the liver). This is done to kill cancer cells growing in the liver. The tumor is prevented from getting the oxygen and nutrients it needs to grow. The liver continues to receive blood from the hepatic portal vein, which carries blood from the stomach and intestine.

Chemotherapy delivered during hepatic arterial occlusion is called chemoembolization. The anticancer drug is injected into the hepatic artery through a catheter (thin tube). The drug is mixed with the substance that blocks the artery and cuts off blood flow to the tumor. Most of the anticancer drug is trapped near the tumor and only a small amount of the drug reaches other parts of the body.

The blockage may be temporary or permanent, depending on the substance used to block the artery.

Targeted therapy

Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells without harming normal cells. Certain types of targeted therapies are being studied in the treatment of pancreatic NETs.

Supportive care

Supportive care is given to lessen the problems caused by the disease or its treatment. Supportive care for pancreatic NETs may include treatment for the following:

  • Stomach ulcers may be treated with drug therapy such as:
    • Proton pump inhibitor drugs such as omeprazole, lansoprazole, or pantoprazole.
    • Histamine blocking drugs such as cimetidine, ranitidine, or famotidine.
    • Somatostatin-type drugs such as octreotide.
  • Diarrhea may be treated with:
    • Intravenous (IV) fluids with electrolytes such as potassium or chloride.
    • Somatostatin-type drugs such as octreotide.
  • Low blood sugar may be treated by having small, frequent meals or with drug therapy to maintain a normal blood sugar level.
  • High blood sugar may be treated with drugs taken by mouth or insulin by injection.

New types of treatment are being tested in clinical trials.

Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment.

Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment.

Patients can enter clinical trials before, during, or after starting their cancer treatment.

Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment.

Follow-up tests may be needed.

Some of the tests that were done to diagnose the cancer or to find out the stage of the cancer may be repeated. Some tests will be repeated in order to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. This is sometimes called re-staging.

Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back). These tests are sometimes called follow-up tests or check-ups.

Treatment Options for Pancreatic Neuroendocrine Tumors

Gastrinoma

Treatment of gastrinoma may include supportive care and the following:

  • For symptoms caused by too much stomach acid, treatment may be a drug that decreases the amount of acid made by the stomach.
  • For a single tumor in the head of the pancreas:
    • Surgery to remove the tumor.
    • Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid.
    • Surgery to remove the whole stomach (rare).
  • For a single tumor in the body or tail of the pancreas, treatment is usually surgery to remove the body or tail of the pancreas.
  • For several tumors in the pancreas, treatment is usually surgery to remove the body or tail of the pancreas. If tumor remains after surgery, treatment may include either:
    • Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid; or
    • Surgery to remove the whole stomach (rare).
  • For one or more tumors in the duodenum (the part of the small intestine that connects to the stomach), treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct).
  • If no tumor is found, treatment may include the following:
    • Surgery to cut the nerve that causes stomach cells to make acid and treatment with a drug that decreases stomach acid.
    • Surgery to remove the whole stomach (rare).
  • If the cancer has spread to the liver, treatment may include:
    • Surgery to remove part or all of the liver.
    • Radiofrequency ablation or cryosurgical ablation.
    • Chemoembolization.
  • If cancer has spread to other parts of the body or does not get better with surgery or drugs to decrease stomach acid, treatment may include:
    • Chemotherapy.
    • Hormone therapy.
  • If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include:
    • Hepatic arterial occlusion, with or without systemic chemotherapy.
    • Chemoembolization, with or without systemic chemotherapy.

Insulinoma

Treatment of insulinoma may include the following:

  • For one small tumor in the head or tail of the pancreas, treatment is usually surgery to remove the tumor.
  • For one large tumor in the head of the pancreas that cannot be removed by surgery, treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct).
  • For one large tumor in the body or tail of the pancreas, treatment is usually a distal pancreatectomy (surgery to remove the body and tail of the pancreas).
  • For more than one tumor in the pancreas, treatment is usually surgery to remove any tumors in the head of the pancreas and the body and tail of the pancreas.
  • For tumors that cannot be removed by surgery, treatment may include the following:
    • Combination chemotherapy.
    • Palliative drug therapy to decrease the amount of insulin made by the pancreas.
    • Hormone therapy.
    • Radiofrequency ablation or cryosurgical ablation.
  • For cancer that has spread to lymph nodes or other parts of the body, treatment may include the following:
    • Surgery to remove the cancer.
    • Radiofrequency ablation or cryosurgical ablation, if the cancer cannot be removed by surgery.
  • If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include:
    • Hepatic arterial occlusion, with or without systemic chemotherapy.
    • Chemoembolization, with or without systemic chemotherapy.

Glucagonoma

Treatment may include the following:

  • For one small tumor in the head or tail of the pancreas, treatment is usually surgery to remove the tumor.
  • For one large tumor in the head of the pancreas that cannot be removed by surgery, treatment is usually pancreatoduodenectomy (surgery to remove the head of the pancreas, the gallbladder, nearby lymph nodes and part of the stomach, small intestine, and bile duct).
  • For more than one tumor in the pancreas, treatment is usually surgery to remove the tumor or surgery to remove the body and tail of the pancreas.
  • For tumors that cannot be removed by surgery, treatment may include the following:
    • Combination chemotherapy.
    • Hormone therapy.
    • Radiofrequency ablation or cryosurgical ablation.
  • For cancer that has spread to lymph nodes or other parts of the body, treatment may include the following:
    • Surgery to remove the cancer.
    • Radiofrequency ablation or cryosurgical ablation, if the cancer cannot be removed by surgery.
  • If the cancer mostly affects the liver and the patient has severe symptoms from hormones or from the size of tumor, treatment may include:
    • Hepatic arterial occlusion, with or without systemic chemotherapy.
    • Chemoembolization, with or without systemic chemotherapy.

Other Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

For VIPoma, treatment may include the following:

  • Fluids and hormone therapy to replace fluids and electrolytes that have been lost from the body.
  • Surgery to remove the tumor and nearby lymph nodes.
  • Surgery to remove as much of the tumor as possible when the tumor cannot be completely removed or has spread to distant parts of the body. This is palliative therapy to relieve symptoms and improve the quality of life.
  • For tumors that have spread to lymph nodes or other parts of the body, treatment may include the following:
    • Surgery to remove the tumor.
    • Radiofrequency ablation or cryosurgical ablation, if the tumor cannot be removed by surgery.
  • For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following:
    • Chemotherapy.
    • Targeted therapy.

For somatostatinoma, treatment may include the following:

  • Surgery to remove the tumor.
  • For cancer that has spread to distant parts of the body, surgery to remove as much of the cancer as possible to relieve symptoms and improve quality of life.
  • For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following:
    • Chemotherapy.
    • Targeted therapy.

Treatment of other types of pancreatic neuroendocrine tumors (NETs) may include the following:

  • Surgery to remove the tumor.
  • For cancer that has spread to distant parts of the body, surgery to remove as much of the cancer as possible or hormone therapy to relieve symptoms and improve quality of life.
  • For tumors that continue to grow during treatment or have spread to other parts of the body, treatment may include the following:
    • Chemotherapy.
    • Targeted therapy.

Recurrent or Progressive Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

Treatment of pancreatic neuroendocrine tumors (NETs) that continue to grow during treatment or recur (come back) may include the following:

  • Surgery to remove the tumor.
  • Chemotherapy.
  • Hormone therapy.
  • Targeted therapy.
  • For liver metastases:
    • Regional chemotherapy.
    • Hepatic arterial occlusion or chemoembolization, with or without systemic chemotherapy.
  • A clinical trial of a new therapy.

Updated: March 22, 2018
Source: National Cancer Institute



Additional Pancreatic Cancer Treatments

Vitamin C and Doxycycline
This study found that antibiotics, such as Doxycycline, could eradicate Cancer Stem Cells in multiple cancer types. These include: DCIS, breast (ER(+) and ER(-)), ovarian, prostate, lung, and pancreatic carcinomas, as well as melanoma and glioblastoma. The study authors propose the combined use of Doxycycline and Vitamin C as a new strategy for eradicating CSCs.

Pancreatic enzymes
Pancreatic enzymes help break down fats, proteins and carbohydrates. Pancreatic insufficiency is the inability of the pancreas to secrete the enzymes needed for digestion. Having an insufficient amount of pancreatic enzymes is very common among people with pancreatic cancer.
See Pancreatic Enzymes for Pancreatic Cancer

Gonzalez Protocol
A successful alternative therapy that is being studied as a treatment for pancreatic cancer. It includes a special diet, nutritional supplements, pancreatic enzymes, and coffee enemas. The Gonzalez Protocol is available online at The Nicholas Gonzalez Foundation website.

See Gonzalez Protocol

Ukrain
This study concluded: We could show that in unresectable advanced pancreatic cancer, NSC-631570 [ukrain] alone and in combination with gemcitabine nearly doubled the median survival times in patients suffering from advanced pancreatic cancer.

This study says its results suggest that Ukrain can exert some effects on pancreatic tumor progression.


Diabetes drug slows down growth of pancreatic cancer

Metformin — a commonly used generic medication for type 2 diabetes — decreases the inflammation and fibrosis characteristic of the most common form of pancreatic cancer, the researchers said.

Source: The Indian Express

Researchers are likely to have uncovered a novel mechanism behind the ability of the common diabetes drug metformin to inhibit the progression of pancreatic cancer.

Diabetic patients taking metformin have a reduced risk of developing pancreatic cancer. Among patients who develop the tumour, those taking the drug may have a reduced risk of death, the study revealed.

Metformin — a commonly used generic medication for type 2 diabetes — decreases the inflammation and fibrosis characteristic of the most common form of pancreatic cancer, the researchers said.

This beneficial effect may be most prevalent in overweight and obese patients, the findings indicated.

“We found that metformin alleviates desmoplasia — an accumulation of dense connective tissue and tumour-associated immune cells that is a hallmark of pancreatic cancer,” said lead author Dai Fukumura — associate professor of radiation oncology at Harvard Medical School in Massachusetts, US.

The study focused on pancreatic ductal adenocarcinoma — the most common form of pancreatic cancer — which also accounts for almost 40,000 cancer deaths in the US ever year. Half of those diagnosed with this form of pancreatic cancer are overweight or obese, and up to 80 per cent have type 2 diabetes or are insulin resistant, said the researchers.

The researchers first found that levels of hyaluronan — a component of the extracellular matrix — were 30 per cent lower in tumour samples from overweight or obese patients who were taking metformin to treat diabetes than in those who did not take the drug. In obese mouse models, the researchers found that metformin treatment reduced levels of tumour-associated macrophages by 60 per cent and reduced expression of genes involved in remodeling the extracellular matrix of tumour tissue.

“Understanding the mechanism behind metformin’s effects on pancreatic and other cancers may help us identify biomarkers — such as patient body weight and increased tumour fibrosis — that can identify the patients for whom metformin treatment would be most beneficial,” the authors noted in a study published in the journal PLOS One.


Neem Tree Extract Demonstrates Anticancer Activity Against Pancreatic Cancer

Source: OncologyNurseAdvisor
Kathy Boltz, PhD

A natural extract from the neem tree of India has potential to treat pancreatic cancer, according to a study published in Scientific Reports.1

Nimbolide, a compound found in neem leaves, was tested against pancreatic cancer in cell lines and mice. These tests, conducted by biomedical scientists at Texas Tech University Health Sciences Center El Paso (TTUHSC El Paso), found that nimbolide stopped the growth and metastasis of pancreatic cancer, yet did not harm normal, healthy cells.

“The promise nimbolide has shown is amazing, and the specificity of the treatment toward cancer cells over normal cells is very intriguing,” said Rajkumar Lakshmanaswamy, PhD, an associate professor in the TTUHSC El Paso Center of Emphasis in Cancer.

Currently, pancreatic cancer is fatal for 94% of patients who develop the disease within 5 years of diagnosis. No effective treatments are available, and so it has the highest mortality rate of all cancers.

The compound reduced the capacity of pancreatic cancer cells to migrate and invade by 70%, so the cancerous cells did not become aggressive and spread. Metastasis is the chief cause of mortality from the disease.

Furthermore, cancer cell death was induced by nimbolide treatments, as the size and number of pancreatic cancer cell colonies decreased by 80%.

“Nimbolide seems to attack pancreatic cancer from all angles,” Lakshmanaswamy said. The study found that nimbolide increases the generation of reactive oxygen species, which induces apoptotic cell death mediated by the mitochondria of the cells.

“Many people in India actually eat neem and it doesn’t have harmful side effects, which suggests that using nimbolide for pancreatic cancer will not cause adverse effects like chemotherapy and radiation typically do,” said Ramadevi Subramani, PhD, postdoctoral researcher and lead author of the study.

The researchers emphasized that healthy cells were unharmed by nimbolide in both the in vitro and in vivo experiments. Next, the research team plans to pursue both preclinical and clinical investigations.

REFERENCE

  1. Subramani R, Gonzalez E, Arumugam A, et al. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition [published online ahead of print February 11, 2016]. Sci Rep. doi:10.1038/srep19819.

New Treatments May Extend Pancreatic Cancer Survival

Source: Health.com
June 4, 2018

Innovative ways of using chemotherapy can significantly extend the lives of patients with pancreatic cancer, one of the most deadly cancers known, two new clinical trials report.

A four-drug chemo “cocktail” extended surgical patients’ lives by nearly two years over the current standard single-drug chemo regimen for pancreatic cancer, a clinical trial out of France has shown.

“You take overall survival from just under three years to almost five years,” said Dr. Daniel Labow, a cancer surgeon at Mount Sinai Hospital in New York City. “That, for pancreas cancer, is a relative home run because survival in general is so poor.”

Meanwhile, a second preliminary study from the Netherlands found that combining chemotherapy and radiation therapy before pancreatic cancer surgery extended overall survival, particularly for those patients whose tumors were successfully removed.

Read full article at Health.com


Medicinal cannabis ‘may improve survival’ of pancreatic cancer patients

Source: Independent.ie
Sally Wardle
July 31 2018

A study on mice found Cannabidiol improved survival rates.

A cannabis drug may help to extend the lives of pancreatic cancer patients undergoing chemotherapy, new research suggests.

Scientists found mice with the disease survived almost three times longer if they were treated with cannabinoid Cannabidiol (CBD) alongside chemotherapy.

Lead researcher Professor Marco Falasca, from Queen Mary University of London, said it was “a remarkable result”.

The study, published in journal Oncogene, examined the impact of CBD on mice with pancreatic cancer receiving common chemotherapy drug Gemcitabine.

Mice treated with this combination of drugs had a median survival of 56 days, compared to 20 days for those left untreated, while mice receiving chemotherapy alone lived for a median 23.5 days.

Professor Falasca said: “Cannabidiol is already approved for use in clinics, which means we can quickly go on to test this in human clinical trials.

“If we can reproduce these effects in humans, cannabidiol could be in use in cancer clinics almost immediately, compared to having to wait for authorities to approve a new drug.

“The life expectancy for pancreatic cancer patients has barely changed in the last 40 years because there are very few, and mostly only palliative care, treatments available.

“Given the five-year survival rate for people with pancreatic cancer is less than seven per cent, the discovery of new treatments and therapeutic strategies is urgently needed.”

The researchers said the drug combination appears to block a protein called GPR55, slowing the growth of pancreatic cancer cells.

CBD is a medical-grade cannabis extract containing virtually no high-inducing psychoactive chemicals.

It is already known to improve the side effects of chemotherapy, including nausea and vomiting, and so may also improve the quality of life for patients, the researchers said.


Bitter melon

Bitter melon juice diluted to just 5% in water showed remarkable potency in severely damaging all four pancreatic cancer cell lines researchers tested. The bitter melon reduced the viability of two cancer cell lines by 90%, while it knocked off the other two lines by a staggering 98%. And it did so after just 72 hours of treatment!

Bitter melon page


See also

All Your Treatment Options

Tests you need to know about

Vital questions to ask your doctor / oncologist

Steps to Recovery

Source References include:
National Cancer Institute

The Indian Express

OncologyNurseAdvisor

Please share this page