Cell-based Therapies
Cell-based therapies for cancer
Cell-based therapies for cancer involve the administration of living whole cells for the patient for the treatment of a disease.
Table of Contents
Cell-based Therapies
Source: American Society of Gene & Cell Therapy
Cell therapy is defined as the administration of living whole cells for the patient for the treatment of a disease. The origin of the cells can be from the same individual (autologous source) or from another individual (allogeneic source). Cells can be derived from stem cells, such as bone marrow or induced pluripotent stem cells (iPSCs), reprogrammed from skin fibroblasts or adipocytes. Stem cells are applied in the context of bone marrow transplantation directly. Other strategies involve the application of more or less mature cells, differentiated in vitro (in a dish) from stem cells.
Cell Therapy Shows Remarkable Ability to Eradicate Cancer in Clinical Study
Source: Memorial Sloan Kettering Cancer Center
Genetically Modified T Cells Induced Complete Remissions in 88 Percent of Advanced Leukemia Patients Treated
Investigators from Memorial Sloan Kettering Cancer Center have reported more encouraging news about one of the most exciting methods of cancer treatment today. The largest clinical study ever conducted to date of patients with advanced leukemia found that 88 percent achieved complete remissions after being treated with genetically modified versions of their own immune cells. The results were published today in Science Translational Medicine.
“These extraordinary results demonstrate that cell therapy is a powerful treatment for patients who have exhausted all conventional therapies,” said Michel Sadelain, MD, PhD, Director of the Center for Cell Engineering at Memorial Sloan Kettering and one of the study’s senior authors. “Our initial findings have held up in a larger cohort of patients, and we are already looking at new clinical studies to advance this novel therapeutic approach in fighting cancer.”
Adult B cell acute lymphoblastic leukemia (B-ALL), a type of blood cancer that develops in B cells, is difficult to treat because the majority of patients relapse. Patients with relapsed B-ALL have few treatment options; only 30 percent respond to salvage chemotherapy. Without a successful bone marrow transplant, few have any hope of long-term survival.
In the current study, 16 patients with relapsed B-ALL were given an infusion of their own genetically modified immune cells, called T cells. The cells were “reeducated” to recognize and destroy cancer cells that contain the protein CD19. While the overall complete response rate for all patients was 88 percent, even those with detectable disease prior to treatment had a complete response rate of 78 percent, far exceeding the complete response rate of salvage chemotherapy alone.
Dennis J. Billy, C.Ss.R, of Wynnewood, Pennsylvania, was one of the first patients to receive this treatment more than two years ago. He was able to successfully undergo a bone marrow transplant and has been cancer-free and back at work teaching theology since 2011. Paolo Cavalli, a restaurant owner from Oxford, Connecticut, remains in complete remission eight months after receiving his personalized T cell treatment.
A History of Scientific Achievements for Cell-Based Therapies
Cell-based, targeted immunotherapy is a new approach to treating cancer that harnesses the body’s own immune system to attack and kill cancerous cells. Unlike with a common virus such as the flu, our immune system does not recognize cancer cells as foreign and is therefore at a disadvantage in eradicating the disease. For more than a decade, researchers at Memorial Sloan Kettering have been exploring ways to reengineer the body’s own T cells to recognize and attack cancer. In 2003, they were the first to report that T cells engineered to recognize the protein CD19, which is found on B cells, could be used to treat B cell cancers in mice.
“Memorial Sloan Kettering was the first center to report successful outcomes using this CD19-targeted approach in B-ALL patients,” said Renier Brentjens, MD, PhD, Director of Cellular Therapeutics at Memorial Sloan Kettering and one of the study’s senior authors. “It’s extremely gratifying to witness the astonishing results firsthand in my patients, having worked for more than a decade developing this technology from the ground up.”
In March 2013, the same team of researchers first reported the results of five patients with advanced B-ALL who were treated with cell therapy. Remarkably, all five patients achieved complete remissions.
Results Demonstrate Potential of New Therapy
In the current study, seven of the 16 patients (44 percent) were able to successfully undergo bone marrow transplantation — the standard of care and the only curative option for B-ALL patients — following treatment. Three patients were ineligible due to failure to achieve a complete remission, three were ineligible due to preexisting medical conditions, two declined, and one is still being evaluated for a potential bone marrow transplant. Historically, only 5 percent of patients with relapsed B-ALL have been able to transition to bone marrow transplantation.
The study also provides guidelines for managing side effects of cell therapy, which can include severe flu-like symptoms such as fever, muscle pain, low blood pressure, and difficulty breathing, referred to as cytokine release syndrome. The researchers developed diagnostic criteria and a laboratory test that can identify which patients are at greater risk for developing this syndrome.
Additional studies to determine whether cell therapy can be applied to other types of cancer are already underway, and studies to test whether B-ALL patients would benefit from receiving targeted immunotherapy as frontline treatment are being planned.
Bone Marrow Transplantation and Peripheral Blood Stem Cell Transplantation
Source: The website of the National Cancer Institute (http://www.cancer.gov)
What are bone marrow and hematopoietic stem cells?
Bone marrow is the soft, sponge-like material found inside bones. It contains immature cells known as hematopoietic or blood-forming stem cells. (Hematopoietic stem cells are different from embryonic stem cells. Embryonic stem cells can develop into every type of cell in the body.) Hematopoietic stem cells divide to form more blood-forming stem cells, or they mature into one of three types of blood cells: white blood cells, which fight infection; red blood cells, which carry oxygen; and platelets, which help the blood to clot. Most hematopoietic stem cells are found in the bone marrow, but some cells, called peripheral blood stem cells (PBSCs), are found in the bloodstream. Blood in the umbilical cord also contains hematopoietic stem cells. Cells from any of these sources can be used in transplants.
What are bone marrow transplantation and peripheral blood stem cell transplantation?
Bone marrow transplantation (BMT) and peripheral blood stem cell transplantation (PBSCT) are procedures that restore stem cells that have been destroyed by high doses of chemotherapy and/or radiation therapy. There are three types of transplants:
- In autologous transplants, patients receive their own stem cells.
- In syngeneic transplants, patients receive stem cells from their identical twin.
- In allogeneic transplants, patients receive stem cells from their brother, sister, or parent. A person who is not related to the patient (an unrelated donor) also may be used.
Why are BMT and PBSCT used in cancer treatment?
One reason BMT and PBSCT are used in cancer treatment is to make it possible for patients to receive very high doses of chemotherapy and/or radiation therapy. To understand more about why BMT and PBSCT are used, it is helpful to understand how chemotherapy and radiation therapy work.
Chemotherapy and radiation therapy generally affect cells that divide rapidly. They are used to treat cancer because cancer cells divide more often than most healthy cells. However, because bone marrow cells also divide frequently, high-dose treatments can severely damage or destroy the patient’s bone marrow. Without healthy bone marrow, the patient is no longer able to make the blood cells needed to carry oxygen, fight infection, and prevent bleeding. BMT and PBSCT replace stem cells destroyed by treatment. The healthy, transplanted stem cells can restore the bone marrow’s ability to produce the blood cells the patient needs.
In some types of leukemia, the graft-versus-tumor (GVT) effect that occurs after allogeneic BMT and PBSCT is crucial to the effectiveness of the treatment. GVT occurs when white blood cells from the donor (the graft) identify the cancer cells that remain in the patient’s body after the chemotherapy and/or radiation therapy (the tumor) as foreign and attack them.
What types of cancer are treated with BMT and PBSCT?
BMT and PBSCT are most commonly used in the treatment of leukemia and lymphoma. They are most effective when the leukemia or lymphoma is in remission (the signs and symptoms of cancer have disappeared). BMT and PBSCT are also used to treat other cancers such as neuroblastoma (cancer that arises in immature nerve cells and affects mostly infants and children) and multiple myeloma. Researchers are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment of various types of cancer.
How are the donor’s stem cells matched to the patient’s stem cells in allogeneic or syngeneic transplantation?
To minimize potential side effects, doctors most often use transplanted stem cells that match the patient’s own stem cells as closely as possible. People have different sets of proteins, called human leukocyte-associated (HLA) antigens, on the surface of their cells. The set of proteins, called the HLA type, is identified by a special blood test.
In most cases, the success of allogeneic transplantation depends in part on how well the HLA antigens of the donor’s stem cells match those of the recipient’s stem cells. The higher the number of matching HLA antigens, the greater the chance that the patient’s body will accept the donor’s stem cells. In general, patients are less likely to develop a complication known as graft-versus-host disease (GVHD) if the stem cells of the donor and patient are closely matched.
Close relatives, especially brothers and sisters, are more likely than unrelated people to be HLA-matched. However, only 25 to 35 percent of patients have an HLA-matched sibling. The chances of obtaining HLA-matched stem cells from an unrelated donor are slightly better, approximately 50 percent. Among unrelated donors, HLA-matching is greatly improved when the donor and recipient have the same ethnic and racial background. Although the number of donors is increasing overall, individuals from certain ethnic and racial groups still have a lower chance of finding a matching donor. Large volunteer donor registries can assist in finding an appropriate unrelated donor.
Because identical twins have the same genes, they have the same set of HLA antigens. As a result, the patient’s body will accept a transplant from an identical twin. However, identical twins represent a small number of all births, so syngeneic transplantation is rare.
How is bone marrow obtained for transplantation?
The stem cells used in BMT come from the liquid center of the bone, called the marrow. In general, the procedure for obtaining bone marrow, which is called “harvesting,” is similar for all three types of BMTs (autologous, syngeneic, and allogeneic). The donor is given either general anesthesia, which puts the person to sleep during the procedure, or regional anesthesia, which causes loss of feeling below the waist. Needles are inserted through the skin over the pelvic (hip) bone or, in rare cases, the sternum (breastbone), and into the bone marrow to draw the marrow out of the bone. Harvesting the marrow takes about an hour.
The harvested bone marrow is then processed to remove blood and bone fragments. Harvested bone marrow can be combined with a preservative and frozen to keep the stem cells alive until they are needed. This technique is known as cryopreservation. Stem cells can be cryopreserved for many years.
How are PBSCs obtained for transplantation?
The stem cells used in PBSCT come from the bloodstream. A process called apheresis or leukapheresis is used to obtain PBSCs for transplantation. For 4 or 5 days before apheresis, the donor may be given a medication to increase the number of stem cells released into the bloodstream. In apheresis, blood is removed through a large vein in the arm or a central venous catheter (a flexible tube that is placed in a large vein in the neck, chest, or groin area). The blood goes through a machine that removes the stem cells. The blood is then returned to the donor and the collected cells are stored. Apheresis typically takes 4 to 6 hours. The stem cells are then frozen until they are given to the recipient.
How are umbilical cord stem cells obtained for transplantation?
Stem cells also may be retrieved from umbilical cord blood. For this to occur, the mother must contact a cord blood bank before the baby’s birth. The cord blood bank may request that she complete a questionnaire and give a small blood sample.
Cord blood banks may be public or commercial. Public cord blood banks accept donations of cord blood and may provide the donated stem cells to another matched individual in their network. In contrast, commercial cord blood banks will store the cord blood for the family, in case it is needed later for the child or another family member.
After the baby is born and the umbilical cord has been cut, blood is retrieved from the umbilical cord and placenta. This process poses minimal health risk to the mother or the child. If the mother agrees, the umbilical cord blood is processed and frozen for storage by the cord blood bank. Only a small amount of blood can be retrieved from the umbilical cord and placenta, so the collected stem cells are typically used for children or small adults.
Are any risks associated with donating bone marrow?
Because only a small amount of bone marrow is removed, donating usually does not pose any significant problems for the donor. The most serious risk associated with donating bone marrow involves the use of anesthesia during the procedure.
The area where the bone marrow was taken out may feel stiff or sore for a few days, and the donor may feel tired. Within a few weeks, the donor’s body replaces the donated marrow; however, the time required for a donor to recover varies. Some people are back to their usual routine within 2 or 3 days, while others may take up to 3 to 4 weeks to fully recover their strength.
Are any risks associated with donating PBSCs?
Apheresis usually causes minimal discomfort. During apheresis, the person may feel lightheadedness, chills, numbness around the lips, and cramping in the hands. Unlike bone marrow donation, PBSC donation does not require anesthesia. The medication that is given to stimulate the mobilization (release) of stem cells from the marrow into the bloodstream may cause bone and muscle aches, headaches, fatigue, nausea, vomiting, and/or difficulty sleeping. These side effects generally stop within 2 to 3 days of the last dose of the medication.
How does the patient receive the stem cells during the transplant?
After being treated with high-dose anticancer drugs and/or radiation, the patient receives the stem cells through an intravenous (IV) line just like a blood transfusion. This part of the transplant takes 1 to 5 hours.
Are any special measures taken when the cancer patient is also the donor (autologous transplant)?
The stem cells used for autologous transplantation must be relatively free of cancer cells. The harvested cells can sometimes be treated before transplantation in a process known as “purging” to get rid of cancer cells. This process can remove some cancer cells from the harvested cells and minimize the chance that cancer will come back. Because purging may damage some healthy stem cells, more cells are obtained from the patient before the transplant so that enough healthy stem cells will remain after purging.
What happens after the stem cells have been transplanted to the patient?
After entering the bloodstream, the stem cells travel to the bone marrow, where they begin to produce new white blood cells, red blood cells, and platelets in a process known as “engraftment.” Engraftment usually occurs within about 2 to 4 weeks after transplantation. Doctors monitor it by checking blood counts on a frequent basis. Complete recovery of immune function takes much longer, however—up to several months for autologous transplant recipients and 1 to 2 years for patients receiving allogeneic or syngeneic transplants. Doctors evaluate the results of various blood tests to confirm that new blood cells are being produced and that the cancer has not returned. Bone marrow aspiration (the removal of a small sample of bone marrow through a needle for examination under a microscope) can also help doctors determine how well the new marrow is working.
What are the possible side effects of BMT and PBSCT?
The major risk of both treatments is an increased susceptibility to infection and bleeding as a result of the high-dose cancer treatment. Doctors may give the patient antibiotics to prevent or treat infection. They may also give the patient transfusions of platelets to prevent bleeding and red blood cells to treat anemia. Patients who undergo BMT and PBSCT may experience short-term side effects such as nausea, vomiting, fatigue, loss of appetite, mouth sores, hair loss, and skin reactions.
Potential long-term risks include complications of the pretransplant chemotherapy and radiation therapy, such as infertility (the inability to produce children); cataracts (clouding of the lens of the eye, which causes loss of vision); secondary (new) cancers; and damage to the liver, kidneys, lungs, and/or heart.
With allogeneic transplants, GVHD sometimes develops when white blood cells from the donor (the graft) identify cells in the patient’s body (the host) as foreign and attack them. The most commonly damaged organs are the skin, liver, and intestines. This complication can develop within a few weeks of the transplant (acute GVHD) or much later (chronic GVHD). To prevent this complication, the patient may receive medications that suppress the immune system. Additionally, the donated stem cells can be treated to remove the white blood cells that cause GVHD in a process called “T-cell depletion.” If GVHD develops, it can be very serious and is treated with steroids or other immunosuppressive agents. GVHD can be difficult to treat, but some studies suggest that patients with leukemia who develop GVHD are less likely to have the cancer come back. Clinical trials are being conducted to find ways to prevent and treat GVHD.
The likelihood and severity of complications are specific to the patient’s treatment and should be discussed with the patient’s doctor.
What is a “mini-transplant”?
A “mini-transplant” (also called a non-myeloablative or reduced-intensity transplant) is a type of allogeneic transplant. This approach is being studied in clinical trials for the treatment of several types of cancer, including leukemia, lymphoma, multiple myeloma, and other cancers of the blood.
A mini-transplant uses lower, less toxic doses of chemotherapy and/or radiation to prepare the patient for an allogeneic transplant. The use of lower doses of anticancer drugs and radiation eliminates some, but not all, of the patient’s bone marrow. It also reduces the number of cancer cells and suppresses the patient’s immune system to prevent rejection of the transplant.
Unlike traditional BMT or PBSCT, cells from both the donor and the patient may exist in the patient’s body for some time after a mini-transplant. Once the cells from the donor begin to engraft, they may cause the GVT effect and work to destroy the cancer cells that were not eliminated by the anticancer drugs and/or radiation. To boost the GVT effect, the patient may be given an injection of the donor’s white blood cells. This procedure is called a “donor lymphocyte infusion.”
What is a “tandem transplant”?
A “tandem transplant” is a type of autologous transplant. This method is being studied in clinical trials for the treatment of several types of cancer, including multiple myeloma and germ cell cancer. During a tandem transplant, a patient receives two sequential courses of high-dose chemotherapy with stem cell transplant. Typically, the two courses are given several weeks to several months apart. Researchers hope that this method can prevent the cancer from recurring (coming back) at a later time.
How do patients cover the cost of BMT or PBSCT?
Advances in treatment methods, including the use of PBSCT, have reduced the amount of time many patients must spend in the hospital by speeding recovery. This shorter recovery time has brought about a reduction in cost. However, because BMT and PBSCT are complicated technical procedures, they are very expensive. Many health insurance companies cover some of the costs of transplantation for certain types of cancer. Insurers may also cover a portion of the costs if special care is required when the patient returns home.
There are options for relieving the financial burden associated with BMT and PBSCT. A hospital social worker is a valuable resource in planning for these financial needs. Federal government programs and local service organizations may also be able to help.
What are the costs of donating bone marrow, PBSCs, or umbilical cord blood?
All medical costs for the donation procedure are covered by Be The Match®, or by the patient’s medical insurance, as are travel expenses and other non-medical costs. The only costs to the donor might be time taken off from work.
A woman can donate her baby’s umbilical cord blood to public cord blood banks at no charge. However, commercial blood banks do charge varying fees to store umbilical cord blood for the private use of the patient or his or her family.
Where can people get more information about potential donors and transplant centers?
The National Marrow Donor Program® (NMDP), a nonprofit organization, manages the world’s largest registry of more than 11 million potential donors and cord blood units. The NMDP operates Be The Match®, which helps connect patients with matching donors.
A list of U.S. transplant centers that perform allogeneic transplants can be found at BeTheMatch.org/access.Exit Disclaimer The list includes descriptions of the centers, their transplant experience, and survival statistics, as well as financial and contact information.
Organization: | National Marrow Donor Program |
---|---|
Address: | Suite 100 3001 Broadway Street, NE. Minneapolis, MN 55413–1753 |
Telephone: | 612–627–5800 1–800–627–7692 (1–800–MARROW–2) (Be The Match Registry) 1–888–999–6743 (Be The Match Patient Services) |
E-mail: | patientinfo@nmdp.org |
Website: | http://www.bethematch.orgExit Disclaimer |
Where can people get more information about clinical trials of BMT and PBSCT?
Clinical trials that include BMT and PBSCT are a treatment option for some patients. Information about ongoing clinical trials is available from NCI’s CIS at 1–800–422–6237 (1–800–4–CANCER) or on NCI’s website.
Treatment is available from the MD Anderson’s Stem Cell Transplantation & Cellular Therapy Center
Dendritic Cells That Attack Cancer
Source: The website of the National Cancer Institute (http://www.cancer.gov)
Another approach to cancer therapy takes advantage of the normal role of the dendritic cell as an immune educator. Dendritic cells grab antigens from viruses, bacteria, or other organisms and wave them at T cells to recruit their help in an initial T cell immune response. This works well against foreign cells that enter the body, but cancer cells often evade the self/non-self detection system.
By modifying dendritic cells, researchers are able to trigger a special kind of autoimmune response that includes a T cell attack of the cancer cells. Because a cancer antigen alone is not enough to rally the immune troops, scientists first fuse a cytokine to a tumor antigen with the hope that this will send a strong antigenic signal. Next, they grow a patient’s dendritic cells in the incubator and let them take up this fused cytokine-tumor antigen. This enables the dendritic cells to mature and eventually display the same tumor antigens as appear on the patient’s cancer cells. When these special mature dendritic cells are given back to the patient, they wave their newly acquired tumor antigens at the patient’s immune system, and those T cells that can respond mount an attack on the patient’s cancer cells.
See Dendritic Cell therapy page
Gene Therapy
A type of experimental treatment in which foreign genetic material (DNA or RNA) is inserted into a person’s cells to prevent or fight disease. Gene therapy is being studied in the treatment of certain types of cancer.
The website of the National Cancer Institute (http://www.cancer.gov)
What is gene therapy?
Still an experimental form of treatment, gene therapy attempts to introduce genetic material (DNA or RNA) into living cells. Gene therapy is being studied in clinical trials for many types of cancer.
In general, genetic material cannot be inserted directly into a person’s cells. Instead, it is delivered to the cells using a carrier, or “vector.” The vectors most commonly used in gene therapy are viruses, because they have the unique ability to recognize certain cells and insert genetic material into them. Scientists alter these viruses to make them more safe for humans (e.g., by inactivating genes that enable them to reproduce or cause disease) and/or to improve their ability to recognize and enter the target cell. A variety of liposomes (fatty particles) and nanoparticles are also being used as gene therapy vectors, and scientists are investigating methods of targeting these vectors to specific cell types.
Researchers are studying several methods for treating cancer with gene therapy. Some approaches target cancer cells, to destroy them or prevent their growth. Others target healthy cells to enhance their ability to fight cancer. In some cases, researchers remove cells from the patient, treat the cells with the vector in the laboratory, and return the cells to the patient. In others, the vector is given directly to the patient. Some gene therapy approaches being studied are described below.
- Replacing an altered tumor suppressor gene that produces a nonfunctional protein (or no protein) with a normal version of the gene. Because tumor suppressor genes (e.g., TP53) play a role in preventing cancer, restoring the normal function of these genes may inhibit cancer growth or promote cancer regression.
- Introducing genetic material to block the expression of an oncogene whose product promotes tumor growth. Short RNA or DNA molecules with sequences complementary to the gene’s messenger RNA (mRNA) can be packaged into vectors or given to cells directly. These short molecules, called oligonucleotides, can bind to the target mRNA, preventing its translation into protein or even causing its degradation.
- Improving a patient’s immune response to cancer. In one approach, gene therapy is used to introduce cytokine-producing genes into cancer cells to stimulate the immune response to the tumor.
- Inserting genes into cancer cells to make them more sensitive to chemotherapy, radiation therapy, or other treatments
- Inserting genes into healthy blood-forming stem cells to make them more resistant to the side effects of cancer treatments, such as high doses of anticancer drugs
- Introducing “suicide genes” into a patient’s cancer cells. A suicide gene is a gene whose product is able to activate a “pro-drug” (an inactive form of a toxic drug), causing the toxic drug to be produced only in cancer cells in patients given the pro-drug. Normal cells, which do not express the suicide genes, are not affected by the pro-drug.
- Inserting genes to prevent cancer cells from developing new blood vessels (angiogenesis)
Testimonials
The Childrens Hospital of Philadelphia
Where can I get this treatment and more information?
Ask your doctor/oncologist.
American Society of Gene & Cell Therapy
Updated September 2024